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Abstract. High-resolution climate data [O(1 km)] at the catchment scale can be of great value to both hydrological modellers

and end users, in particular for the study of extreme precipitation. Despite the well-known advantages of dynamical downscal-

ing for producing quality high-resolution data, the added value of dynamically downscaling to O(1 km) resolutions can often

not be realised due to the prohibitive computational expense. Here we present a novel and flexible classification algorithm for

discriminating between days with an elevated potential for extreme precipitation over a catchment and days without, so that5

dynamical downscaling to convection-permitting resolution can be selectively performed on high-risk days only, drastically

reducing total computational expense compared to continuous simulations; the classification method can be applied to climate

model data or reanalyses. Using observed precipitation and the corresponding synoptic-scale circulation patterns from reanal-

ysis, characteristic extremal circulation patterns are identified for the catchment via a clustering algorithm. These extremal

patterns serve as references against which days can be classified as potentially extreme, subject to additional tests of relevant10

meteorological variables in the vicinity of the catchment. Applying the classification algorithm to reanalysis, the set of po-

tential extreme days (PEDs) contains well below 10 % of all days, though includes essentially all extreme days; applying the

algorithm to reanalysis-driven regional climate simulations over Europe (12 km resolution) shows similar performance and the

subsequently dynamically downscaled simulations (2 km resolution) well reproduce the observed precipitation statistics of the

PEDs from the training period. Additional tests on continuous 12- and 2 km resolution historical and future (RCP8.5) climate15

simulations show the algorithm again reducing the number of days to simulate by over 90 % and performing consistently

across climate regimes. The downscaling framework we propose represents a computationally inexpensive means of producing

high-resolution climate data, focused on extreme precipitation, at the catchment scale, while still retaining the advantages of

the physically-based dynamical downscaling approach.

1 Introduction20

Hydrological modellers and regional decision-makers benefit greatly from high spatial [O(1 km)] and temporal resolution cli-

mate data to both drive their catchment-scale hydrological models and design regional planning strategies. These are necessary

as standard resolution model data [O(10-100 km)] suffer from many deficiencies, most noticeably both “averaging” and “scale-

interaction” effects whereby (i) area averaging over large grid cell areas smooths-out fine-scale detail and (ii) feedbacks from

small to large scales are not represented (Volosciuk et al., 2015); these deleterious effects are amplified towards the tails of the25
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distribution (Volosciuk et al., 2015). Despite their desirability, suitably high-resolution datasets are however rarely available,

either due to insufficiently dense observational networks or the computational expenses associated with running climate models

at such high spatial resolutions. To bridge this gap, both statistical and dynamical downscaling techniques have been developed

for precipitation (Maraun et al., 2010) and other variables.

Statistical downscaling, in which statistical relationships between large-scales and local weather (i.e. observations) are devel-5

oped, provides the computationally cheaper means of generating high-resolution climate data from coarse-resolution models.

Such relationships can however only be developed in the presence of both appropriate local weather data (typically obser-

vations) and corresponding large-scale data (reanalysis or observational data), which are often unavailable at sub-daily and

sub-hourly temporal resolutions and/or spatially too sparse. Issues with reference data aside, the lack of a physical basis behind

standard statistical downscaling techniques can present other difficulties. Widely used univariate approaches do not capture10

physical and spatial dependencies and thus physical and spatial coherence between different meteorological variables may

not be maintained after downscaling (Maraun et al., 2010), leading to combinations which are suboptimal as boundary con-

ditions for hydrological modelling. Additionally, a statistical downscaling method which performs impressively in one region

or season may not work as well in other seasons or regions (Volosciuk et al., 2017). Finally, and crucially, in the absence of

a physical foundation there is no intrinsic reason why a statistical downscaling method which performs well in the present15

climate should also perform well in a future climate and thus if the coarse model has an incorrect climate change signal the

statistical downscaling method will not apply any physically-based modifications to this (Maraun, 2016).

Dynamical downscaling with regional climate models (RCMs) provides a physically-based, though computationally more

expensive, alternative to the statistical approach, crucially maintaining the physical coherence between different meteorological

variables as far as the relevant processes are represented in the model. High-resolution RCMs (∼10 km) add significant value20

to coarser general circulation models (GCMs) for multiple variables (Feser et al., 2011). This added value (AV) is primarily

achieved through better representation of surface forcings and mesoscale processes, and is thus most evident in the presence of

complex topography (Heikkilä et al., 2011; Torma et al., 2015) or strong land-sea contrasts (Feser et al., 2011). Precipitation,

due to its high spatial and temporal variability, is perhaps the variable for which high-resolution RCMs exhibit the most AV.

The strongest manifestations of AV for precipitation are found at short temporal scales, in the warm season, and in regions25

of complex topography regardless of temporal scale and season (Di Luca et al., 2012); AV is most evident for the extremes

(Heikkilä et al., 2011). Importantly, this AV does not just represent increased small-scale detail, but also AV at the spatial scale

of the driving GCM due to more processes being represented (Torma et al., 2015).

Despite their relatively high resolution, typical RCMs [O(10 km)] still cannot resolve many precipitation-causing processes

such as convection, which must instead be parametrized. As a result, models with parametrized convection tend to misrepresent30

heavy precipitation events, causing them to be too temporally persistent, too spatially widespread and locally not intense

enough (Kendon et al., 2012); further issues are too much drizzle (Boberg et al., 2009) and a temporally displaced diurnal

convective cycle (Hohenegger et al., 2008). Increasing horizontal resolution below about 4 km, convection-permitting models

(CPMs) can explicitly simulate convective processes and improve on many of these shortcomings (Prein et al., 2015). The

explicit representation of convective dynamics in CPMs produces more realistic convective features (Weisman et al., 2008),35
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more accurate local precipitation intensities (Lean et al., 2008), and an improved representation of the diurnal convective cycle

(Prein et al., 2013). With respect to the accuracy of precipitation totals, the main AV of CPMs can be expected to be found in

area averages over, for example, a river catchment (Roberts, 2008). Importantly, the AV of CPMs is not restricted to improved

present-climate precipitation statistics (e.g. Ban et al., 2014), but also extends to the climate change signal. Recent studies

show that sub-daily convective extremes in CPMs exhibit an amplified response to enhanced boundary forcings compared to5

that found in coarser models with parametrized convection (Kendon et al., 2014), which can be highly non-linear (Meredith

et al., 2015). The explicit simulation of physical process chains in CPMs, which can be highly-localized, gives more confidence

in their projections than those derived from methods lacking in such a foundation or using parametrizations.

Of the current state-of-the-art options, CPMs provide the most reliable means of downscaling coarse-model output to the

high spatial-resolution climate data (with fine-scale variability) needed by hydrologists and end-users, particularly for the study10

of extremes. A serious constraint on CPMs, however, is the considerable computational expense incurred when carrying out

convection-permitting simulations on multi-year timescales, making them an infeasible option for many. For users interested

in studying the impact of heavy or extreme precipitation events on their catchment, at least 90 % of the days in any continuous

simulation will be of little interest and could be viewed as wasted computational time. In an ideal procedure, dynamically

downscaling to convection-permitting resolution might be skipped on these redundant days and only be carried out when15

there is a significant chance of the catchment experiencing extreme precipitation. Similarly, some users are more interested

in assessing the catchment-scale impacts of a selection of physically-plausible extremes from a future climate, without being

focused on precise probabilities derived from continuous CPM simulations (Hazeleger et al., 2015). The identification of

which days to downscale, however, is a non-trivial task. Coarse model precipitation on its own is a poor predictor of extreme

precipitation events in both observations and CPMs, especially in the summer, when precipitation extremes tend to be short-20

duration and of a convective nature (Fig. 1).

With the aim of slashing computational time and expense, we develop a transferable methodology to discriminate between

days with an increased likelihood of extreme precipitation – “potential extreme days” (PEDs) – and redundant days so that

dynamical downscaling to convection-permitting resolution can be performed over a catchment only when a day has been

identified as a PED. In Sect. 2 we set out in detail our methodology and validation approach, with the following sections25

containing results, discussion and conclusions.

2 Methodolody and Data

To identify for dynamical downscaling days with an increased likelihood of extreme precipitation – “potential extreme days”

(PEDs) – over the region of interest, we develop a two-step classification method based on (1) the synoptic-scale circulation

pattern and (2) local-scale (modelled) meteorological indicators in the coarser-resolution parent model. This requires the iden-30

tification of synoptic-scale circulation patterns which typically accompany extreme precipitation events in our catchment and

the careful selection of meteorological parameters which, when in the vicinity of the catchment a defined threshold is exceeded,

are conducive to the development of intense precipitation.
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Figure 1. Coarse model extreme precipitation is a poor predictor of extreme precipitation in both observations and high-resolution simula-

tions. (a) For summer extreme precipitation (1979-2015), the percentage of 99th percentile days in ERA-Interim (Dee et al., 2011) for which

the corresponding day in observations (REGNIE; Rauthe et al., 2013) exceeds the observed 99th percentile. A value of 100% would mean

that for all dates on which the 99th percentile was exceeded in the model, the observed 99th percentile was also exceeded in observations on

the same date. (b) As in (a), except for winter (1980-2015). (c), (d) As in (a), except between the 0.11◦ and 0.02◦ simulations discussed in

Sect. 2 for the (c) historical (1970-1999) and (d) RCP8.5 (2070-2099) periods. Values in the bottom-left of each panel show the area average

over all data points, while values in the bottom right show area averages over the Wupper catchment in western Germany (marked; see also

Sect. 2).

Our study catchment is that of the River Wupper in western Germany (Fig. 2). The Wupper catchment, home to some

950,000 inhabitants, has an area of 813 km2, contains about 2,300 km of streams and rivers, and drains into the River Rhine.

The Wupper basin is vulnerable to winter flooding and summertime flash-flooding from mesoscale convective events; we thus

focus on these two seasons.

2.1 Identification of synoptic-scale extremal circulation patterns5

The REGNIE gridded daily precipitation dataset (Rauthe et al., 2013), with a spatial resolution of roughly 1 km, is used to

compute separate time series of observed daily precipitation area-averaged over the Wupper catchment (Fig. 2) for each full
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Figure 2. The Wupper catchment (black outline) with main tributaries and lakes, and the River Rhine running north-northwestwards. Shading

represents the regional orography as represented in the 0.02◦ CCLM model used in the simulations (see Sect. 2.3). The exact region covered

by this map is marked in the inner box of the top-left panels in Figs. 3 and 4.

winter and summer in the period 1979-2015. From these time series the 99th precipitation percentiles of all days (P99D) are

computed, and all days above P99D are defined as ‘extreme’.

To identify the large-scale circulation patterns associated with these extreme days, the corresponding 500 hPa geopotential

height (Z500) anomalies are extracted from the ERA-Interim reanalysis (Dee et al., 2011). REGNIE has an accumulation

period of 0730-0730 local time, that is 0530-0530 UTC in summer and 0630-0630 UTC in winter. Z500 anomalies are thus5

averaged over the timesteps 12, 18 and 00 UTC, i.e. the middle of the accumulation period, and are relative to their 1979-2015

seasonal means.

The extracted Z500 anomaly patterns next undergo a cluster analysis via the simulated annealing and diversified random-

ization (SANDRA) method (Philipp et al., 2007). SANDRA has been shown to overcome many of the limitations of standard

k-means clustering algorithms, greatly reducing the role of stochastic effects in the final cluster partitions and thus providing10

clusters much closer to the “global optimum” (Philipp et al., 2007). It is also less numerically costly than model-based clus-

tering algorithms such as Gaussian mixture models (e.g. Rust et al., 2010). Relevant software for meteorological applications

has been developed in the EU COST Action 733 (Philipp et al., 2016), and we use this software in our study. Geopotential

height is a standard variable for cluster analyses of atmospheric circulation patterns (e.g. Hidalgo-Muñoz et al., 2011; Merino

et al., 2016; Romero et al., 1999). Following Brigode et al. (2013), the spatial extent of the clustering domain is subjectively15

chosen such that the typical synoptic patterns associated with extreme precipitation in the Wupper catchment can be captured

within the domain when present (Figs. 3-4), which is easily identifiable from historical extremes. Prior to the cluster analyses,

outliers which would have little chance of being assigned to an appropriate cluster are removed from the datasets. Outliers

are identified by computing, for each day, the Pearson pattern correlation of each Z500 anomaly pattern with that on all other

extreme days; any day whose maximum pattern correlation (i.e. across all days) is more than two standard deviations below20
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the sample mean of the same is excluded from the cluster analysis. In our case, this results in just one day being removed from

each of the winter and summer input data, leaving 31 and 33 days respectively. As a stability criterion, the number of clusters

K is increased until the minimum intra-cluster pattern correlation – that is, the Z500-anomaly pattern correlation between each

cluster member and its own cluster mean – is not less than 0.5. This way all days are assigned to a cluster with which they

have genuine similarities, rather than simply the error-minimized ‘least bad’ cluster, as is typically the case in clustering large5

datasets of meteorological variables.

The resulting Z500 anomaly clusters and any outliers are considered as ‘reference’ extremal circulation patterns against

which candidate days from a given dataset can be classified as PEDs, based on their similarity to these references. To this end,

the area-weighted Pearson pattern correlation ρi,j (uncentred) between the Z500 anomaly fields of the candidate day i and the

cluster centroid j is used; for our clustering domain (Figs. 3-4) this encompasses 1,935 data points (i.e. grid cells). A perfect10

ρi,j would have a value of 1. With the guiding aim of correctly classifying as many extreme days (i.e. P ≥ P99D) and rejecting

as many non-extreme days as possible, a ρ threshold (ρjt) is chosen for each cluster centroid j and days with a ρi,j below this

threshold are rejected. ρjt for each cluster is simply the minimum intra-cluster pattern correlation, reduced by 10 % so that

days with a ρ comparable to the lowest intra-cluster ρ are not rejected. To account for clusters with a particularly high ρjt due

to few members, ρjt is capped at 2
3 .15

2.2 Assessment of local-scale meteorological indicators

All remaining days not rejected based on their ρi,j are next assessed in terms of relevant meteorological variables at the local-

scale, i.e. in the vicinity of the catchment. The choice of meteorological variable and the area around the catchment in which it

is assessed are flexible. In general, they may depend on the catchment, season and variables available from the coarser parent

model. For the Wupper catchment in summer (JJA) and winter (DJF) we select daily maxima (0600-0559 UTC) of relative20

humidity (700 hPa JJA, 300 hPa DJF) as an indicator of (near-)saturated air masses in the troposphere, 500 hPa horizontal

divergence (JJA, DJF) as an indicator of tropospheric vertical ascent (of a frontal or convective nature), convective available

potential energy (CAPE; JJA) as an indicator of atmospheric instability, and daily accumulated coarse-model precipitation

(JJA, DJF). As with the Z500 data, variables are extracted from ERA-Interim on a Gaussian N128 grid (∼0.7◦). To account for

the transient nature of many extreme weather systems and the often low temporal resolution of reanalysis/model data (e.g. 6-25

hourly in the case of ERA-Interim), it is not only the nearest ERA-Interim grid cell to the catchment centre which is considered,

but an entire 7x7 cells around it (3x3 in the case of coarse-model precipitation). With the guiding aim of ‘catching’ the

highest number of observed precipitation extremes (i.e. P ≥ P99D) while excluding as many other days as possible, exceedance

thresholds for each variable are empirically chosen, either as exceedances of a given percentile (divergence, CAPE, coarse-

model precipitation) or as absolute values (relative humidity). The thresholds used for the Wupper catchment are summarized30

in Table 1. To account for different model climatologies, the absolute relative humidity values are transformed into multiples

of the model’s climatological mean prior to assessment.
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Table 1. Predictor variables, thresholds and region. Note that these thresholds are relative to the model’s/reanalysis’ own climatology, so that

the absolute values of the anomalies/percentiles will vary depending on the model/reanalysis on which the classification algorithm is being

applied. On the Gaussian N128 grid, one cell has a width of roughly 75 km.

Variable Threshold DJF Threshold JJA Time method Cells

Horizontal divergence 90th percentile 90th percentile Daily Maximum 7x7

(500 hPa)

Relative humidity 97.5 % 86 % Daily Maximum 7x7

(300 hPa) (700 hPa)

CAPE n/a 90th percentile Daily Maximum 7x7

Model Precipitation 95th percentile 95th percentile Daily sum 3x3

(all days) (all days)

In order to be classified as a PED, each threshold must be exceeded at any one of the grid cells (not necessarily the same

cell) around the catchment. A schematic summarizes the full two-step selection algorithm (Algorithm 1). Extremal patterns

identified for the Wupper catchment are presented in Sect. 3.1.

2.3 Validation and simulation

The combination of variables, thresholds and clusters for detecting observed precipitation extremes and excluding non-extreme5

days is, as discussed above, empirically determined on the basis of the ERA-Interim and REGNIE datasets. Once this has

been achieved, the method is applied identically to 0.11◦ (∼12.2 km) evaluation simulations over the pan-European EURO-

CORDEX domain (Jacob et al., 2014) covering the period 1979-2015. Simulations were performed with the regional climate

model COSMO-CLM (CCLM; Rockel et al., 2008) version 4.8, with ERA-Interim reanalysis (Dee et al., 2011) as lateral

boundary forcing. CCLM is the community model of the German regional climate research community jointly further devel-10

oped by the CLM-Community. The years 1989-2008 were simulated by the CLM-Community as part of the EURO-CORDEX

experiment (Kotlarski et al., 2014). Years 1979-1988 and 2009-2015 (up to 31.07.2015) were simulated by the present authors

using identical model version and settings.

Z500 CCLM data are interpolated to the clustering domain and the selected meteorological variables are conservatively

regridded to a grid of similar spatial resolution to that used in the training stage, i.e. 0.7◦ and centred on the Wupper catchment.15

All winter and summer days are then either classified as PEDs for further dynamical downscaling with CCLM to a convection-

permitting resolution of 0.02◦ (∼2.2 km) or rejected; the nesting ratio of 5.5:1 is in line with that recommended in the literature

(Denis et al., 2003). The enhanced performance of CCLM at convection-permitting resolution (relative to coarser resolutions)

in reproducing precipitation statistics, particularly extreme statistics, over central Europe has been extensively documented

(Ban et al., 2014; Fosser et al., 2015; Brisson et al., 2016b).20

The additional downscaling step is performed using the same version of CCLM with a 221x221 grid cell domain centred on

the Wupper catchment (Figs. 3-4), giving sufficient spatial spinup (Brisson et al., 2016a) upstream of the Wupper catchment.
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Algorithm 1 Schematic of classification algorithm for identifying PEDs in summer. Example for a single day i.

ρi,j is the Pearson pattern correlation between day i and extremal pattern j, RH700 is relative humidity at 700 hPa,

DIV500 is horizontal divergence at 500 hPa, CAPE is convective available potential energy, P is accumulated daily precipita-

tion.

ρjt (i.e. ρ thresholds) are determined as described in Sect. 2.1. if tests of local-scale meteorological variables are per-

formed using the thresholds and grids described in Table 1. If any of the cells in the grid pass the test, then the next test is

applied.

For winter the algorithm is the same, except that CAPE is excluded and relative humidity is at 300 hPa.

for j in (1, . . .,K) do # Extremal patterns 1 to K

if (ρi,j ≥ ρjt) then # Synoptic-scale tests

if (RH700i ≥RH700thresh) then # Local-scale tests

if (DIV 500i ≥DIV 500thresh .OR. CAPEi ≥ CAPEthresh) then

if (Pi ≥ P95D) then

DAYi classified as PED

end if

end if

end if

end if

end for

Lateral boundary conditions are updated 3-hourly and 50 unevenly spaced terrain-following vertical levels are used. For each

identified PED, the 0.02◦ simulation is initialized at 1200 UTC the preceding day to allow abundant precipitation spin-up time;

as little as 3-6 hours are typically sufficient in convection-permitting models though (Sun et al., 2012). PEDs on consecutive

days are downscaled continuously to save resources. For validation, the precipitation statistics of the dynamically downscaled

PEDs from the CCLM evaluation runs are compared with those of the observed PEDs identified from ERA-Interim. Area aver-5

ages of daily precipitation over the Wupper catchment are considered, using REGNIE and 0.02◦ model output. The evaluation

and validation of the identified PEDs is presented in Sect. 3.2.

2.4 Verification via continuous simulations

To provide a sterner test of the method, we additionally perform two sets of continuous 30-season convection-permitting

simulations over the Wupper catchment so that the method can also be assessed in reverse – of the actually simulated 0.02◦10

extreme days (P ≥ P99D), how many would have been identified as PEDs from the 0.11◦ coarse model?
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A different GCM – the Max Planck Institute’s Earth System Model (MPI-ESM-LR) – at the start of the modelling chain

provides a new challenge for the method from the previous ERA-Interim-driven simulations. The MPI-ESM-LR runs are

continuous transient simulations performed as part of the CMIP5 project (Taylor et al., 2012), using observed greenhouse gas

concentrations from 1949-2005 (historical) and representative concentration pathway 8.5 (RCP8.5; Van Vuuren et al., 2011)

from 2006-2100. One MPI-ESM-LR member (1949-2100) has been continuously downscaled with CCLM over the EURO-5

CORDEX domain to 0.11◦ resolution by the CLM-Community (Keuler et al., 2016); model settings are as in the previously

discussed ERA-Interim-driven evaluation runs, greenhouse gas concentrations excepted.

For the present study, we have dynamically downscaled the aforementioned 0.11◦ CCLM transient simulations to 0.02◦

over 30 summers from the historical and RCP8.5 periods, 1970-1999 and 2070-2099 respectively. The 0.02◦ model domain

and setup are the same as in Sect. 2.3 (greenhouse gas concentrations aside); simulations are initialized in April and run until10

the end of August each year. Summertime extreme precipitation in the Wupper basin tends to be of a convective and more

catchment-scale nature than its wintertime counterpart, with small-scale variability and chaotic processes playing an enhanced

role in event intensity. In addition to this, potential differences in large-scale circulation found in a future climate pose an

additional challenge for the classification algorithm. The choice of 30 summers, historical and future, is thus intended to

ensure a robust testing of our method. The performance testing via continuous simulations is presented in Sect. 3.3.15

3 Results and Discussion

3.1 Extremal circulation patterns for the Wupper catchment

The greater diversity of synoptic patterns which can lead to extreme precipitation in the Wupper catchment in summer, com-

pared to winter, can be seen in the number of clusters K necessary before our stability criterion (see Sect. 2.1) is reached (Figs.

3-4). The higher K also hints at the in general more challenging nature of forecasting summertime intense precipitation, when20

synoptic forcing tends to be weaker and small-scale chaotic processes play an increased role. In winter (Fig. 3), precipitation

extremes in the Wupper catchment are most often associated with a dipole-like structure characteristic of a strong positive phase

of the North Atlantic Oscillation (Hurrell, 1995), with various shifts of the dipole centres (clusters 1-3). Such a synoptic pattern

gives a strong zonal forcing, sweeping deep low-pressure systems and associated frontal precipitation across the catchment;

similar clusters have previously been identified for north-eastern Switzerland (Giannakaki and Martius, 2016). For the remain-25

ing cluster (cluster 4) and the outlier, shallower depressions become embedded in a relatively weak zonal flow, depositing their

albeit less intense precipitation over a more prolonged period; these patterns account for less than one sixth of all extreme days

(P ≥ P99D) though. In summer, a dipole-like pattern can also be seen on some extreme days (cluster 1), though accounting for

just over one seventh of all extremes; such events in summer can also be expected to include enhanced frontal convection. The

remainder of the summertime extremes are associated with a weaker zonal forcing. High pressure over eastern Europe often30

advects warm, moist air from the Mediterranean into central Europe (clusters 2 and 4), enhancing instability and increasing

the chance of deep convection; Bárdossy (2010) also identified such a pattern as bringing intense precipitation to south-west

Germany during summer. Another common pattern is that of a front, often with a small embedded low, extending across the

9
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Figure 3. 500 hPa geopotential height anomalies (shading) of extremal circulation patterns identified for the Wupper catchment in winter,

via the clustering algorithm, and one outlier; the zero-line is marked in black. White contours represent the accompanying sea level pressure

patterns. The grey box centred over western Germany is the 0.02◦ simulation domain (Sect. 2.3).

catchment (clusters 3 and 8) in the wake an eastward moving ridge and triggering frontal lifting as it passes. Quasi-stationary

mid-tropospheric cut-off lows (clusters 5-7) are the most common cause of summertime extremes in our catchment, allowing

slow-moving surface lows to advect a persistent moisture stream, within which intense convective cells can develop, across

the catchment. A not dissimilar pattern was also identified by Brigode et al. (2013) in their study of extreme precipitation in

Austria.5

3.2 Evaluation and validation of identified PEDs

While still capturing more-or-less all observed extreme days, the constraints derived from ERA-Interim variables enable the

classification algorithm to reduce the number of PEDs to well below 10 % of all days (Table 2). In the process, the number of

“redundant days” (i.e. P < P90D) falls from about 3,000 to 48 in winter and 126 in summer. The “redundant days” thus occupy

a much smaller fraction in the PEDs than in the set of all days. Such a good performance in the training dataset is, however, no10

surprise.

Applying the same methodology to the 0.11◦ CCLM evaluation runs (ERA-Interim driven) over the same period, a similar

number of PEDs are identified for dynamical downscaling to 0.02◦ (Table 2). The PEDs again represent well below 10 % of
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Figure 4. As in Figure 3, except for summer.

all days, slashing the computational expense against a continuous simulation of the whole period by an order of magnitude.

Of note is that although the 0.11◦ CCLM simulations are forced at the lateral boundaries by ERA-Interim, only 123 of the

320 dates identified as PEDs in CCLM in summer are also found amongst the ERA-Interim PEDs. This is attributable to the

large internal variability that can be generated in RCMs of sufficiently large domain size (e.g. Lucas-Picher et al., 2008), which

is often comparable to that found in GCMs (Christensen et al., 2001) and can cause the local RCM solution to significantly5

deviate from that of the parent GCM. The fraction of common days is higher in winter at 150/220, representing the typically

smaller internal variability found in RCMs during winter (Giorgi and Bi, 2000) as stronger zonal forcing more rapidly sweeps

small-scale perturbations out of the domain, thus limiting error growth.
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Table 2. Summary table of performance of classification algorithm for training period (ERA-Interim) and CCLM evaluation runs. “Redundant

days” are defined as days with precipitation below the 90th percentile of daily precipitation (all days).

Data / Experiment Time Period PEDs P99D captured Redundant days

(# days) (# days) (days/total days) PEDs | All Days

(days/total days)

ERA-Interim DJF 1980-2015 6.8 % 100 % 22.5 % | 90.0 %

(3,249) (222) (32/32) (50/222 | 2,924/3,249)

ERA-Interim JJA 1979-2015 8.6 % 97 % 44.1 % | 90.0 %

(3,373)† (290) (33/34) (128/290 | 3,036/3,373)

CCLM-0.11◦ CORDEX-EU DJF 1980-2015 6.8 % n/a n/a

(ERA-Interim driven) (3,249) (220)

CCLM-0.11◦ CORDEX-EU JJA 1979-2015 9.8 % n/a n/a

(ERA-Interim driven) (3,373)† (331)

†Ends on 31.07.2015.

Comparing the empirical cumulative distribution functions (ECDFs) for catchment-averaged precipitation (observed) of all

days and PEDs from the training data set (ERA-Interim), the greatly increased probability of daily extreme precipitation on a

randomly selected PED becomes apparent (Fig. 5): in the set of PEDs, the probability of exceeding the climatological winter

(left panel) 90th/99th percentile is about 80 %/20 %, whereas in the set of all days it is only 10 %/1 %. For summer (right

panel), the situation is less pronounced but the climatological (JJA) 90th/99th percentile is exceeded on about 60 %/15 % of the5

days in the PED set. Taking all days, the ECDF can be well described by a typical gamma distribution; the gamma distribution

is known to well represent the bulk of the daily precipitation distribution, though perform less well for the tails (Rust et al.,

2013). The form of the ECDF of the observed PEDs, however, is far removed from this as the probability is shifted towards

more intense precipitation. The change in form of the ECDF – from one dominated by dry to light-rain days, to one dominated

by heavy- to extreme-rain days – results from the classification algorithm’s removal of days with a low potential for intense10

precipitation.

Dynamically downscaling all CCLM 0.11◦ PEDs to 0.02◦ produces ECDFs of daily precipitation which closely resemble

those of the observed PEDs, for both seasons (Fig. 5, green curve); both ECDFs are again dominated by heavy to extreme

precipitation events, with dry days (PD < 0.1 mm) almost completely eliminated. Indeed, many of the seemingly dry to light-

rain days counted over the Wupper catchment in the convection-permitting simulations do still feature heavy precipitation,15

though displaced to neighbouring regions of the 0.02◦ simulation domain (Fig. 6); this occurs most often in summer, owing

to the more small-scale and chaotic nature of convective precipitation. The good match between the ECDFs of observed and

downscaled PEDs shows that, with skilful classification of the PEDs, selective downscaling can be relied on to realistically

reproduce the same range of precipitation events over the catchment as expected from the training dataset and observations,

allowing of course for known model biases (e.g. Fosser et al., 2015). In the process, computational expense is reduced by over20
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Figure 5. Empirical cumulative distribution functions of daily precipitation for all days (red, observed), PEDs (blue, observed), and CCLM

PEDs (green, downscaled to 0.02◦). (a) Winter 1980-2015, (b) summer 1979-2015 (up to 31.07.2015). All values are area averages over the

Wupper catchment. Vertical red lines mark important percentiles of the all-day distribution.

90 % (Table 2) as compared to the computational efforts which would be required for a continuous simulation over the same

period at such high spatial resolution.

3.3 Performance testing on continuous simulations

The continuous dynamical-downscaling of two sets of 30 summers – historical (1970-1999) and RCP8.5 (2070-2099) – from

0.11◦ to 0.02◦ provides an additional set of tests for the classification algorithm, namely: what fraction of the actually simulated5

extreme days in the 0.02◦ model would the method have identified as PEDs from the 0.11◦ model? In addition, is classification

performance degraded in a future climate? The summer season is chosen to ask these questions due to the greater challenges

in predicting summertime intense precipitation (see Sect. 2.4, Sect. 3.1).

Applying the classification algorithm, identically as in Sect. 3.2, to the 0.11◦ historical and RCP8.5 simulations again yields

selections of PEDs representing less than 10 % of the total days (Table 3). Amongst these PEDs, at least 75 % of 0.02◦-10

simulation extreme days are captured in both time slices. In the case of the historical simulations, the fraction of redundant

days (i.e. P < P90D) climbs by almost six percentage points relative to the training data set; for the RCP8.5 simulations, the

fraction falls marginally. The former increase may simply be an artefact of the fewer summers (30 vs. 37) present in this

testing data set. The similarity of performance between the historical and future simulations is noteworthy, particularly in light

of RCP8.5 2070-2099 representing the end of the most extreme RCP scenario. Projected changes in large-scale extratropical15

circulation can be considerable (e.g. Barnes and Polvani, 2013; Zappa et al., 2013), and are known to exert strong control on

regional precipitation climatologies (Shepherd, 2014). In the case of the MPI-ESM-LR model used in this study, for example, a

northward shift of the annual-mean jet in the Atlantic sector (Barnes and Polvani, 2013) and reduction in the frequency of both

North Atlantic and Eurasian summertime anticyclonic blocking (Masato et al., 2013) are projected under the RCP8.5 scenario.
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Figure 6. Illustrative modelled PEDs. (a) Example summer PED downscaled to 0.02◦ and (b) the same day in the 0.11◦ model. In this

example, the strongest precipitation directly strikes the catchment in the 0.02◦ CCLM despite missing the catchment in the parent 0.11◦

CCLM. (c) Example summer PED with highly localised intense precipitation which falls outside the catchment in the 0.02◦ CCLM. (d) The

corresponding day in the 0.11◦ CCLM.

Despite this, the classification algorithm performs more-or-less the same in historical and future climates. This, incidentally,

adds credence to the approach used in conditional event attribution (Trenberth et al., 2015). While the classification algorithm

unsurprisingly fails to capture all extreme days in either the historical or RCP8.5 simulations, the fact that the performance is

the same across both climates indicates the added value of employing a physically-based downscaling methodology, allowing

more robust conclusions to be drawn from the output. Of the extreme days which are not captured, 6 out of 7 (historical) and5

4 out of 5 (RCP8.5) are lost due to their circulation patterns not well matching any of the pre-defined extremal clusters. This

could indicate that the training period for identifying the extremal patterns is too short to encompass sufficient diversity or,

more likely, that the GCM in question (MPI-ESM-LR) doesn’t adequately represent the frequency and/or persistence of the

large-scale circulation patterns which lead to observed extremes in our catchment. For example, CMIP5 GCMs are known

to underestimate the frequency of Eurasian blocking (Masato et al., 2013) and GCMs in general often underestimate the10

persistence of blocking systems (e.g. Matsueda, 2011); the poleward flank of such blocking anticyclones often transports warm
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Table 3. Summary table of performance of classification algorithm for 0.11◦ CCLM historical and RCP8.5 simulations, continuously down-

scaled to 0.02◦ over 30 summers. “Redundant days” are defined as days with precipitation below the 90th percentile of daily precipitation

(all days).

Data / Experiment Time Period PEDs P99D captured Redundant days

(# days) (# days) (days/total days) PEDs | All Days

(days/total days)

MPI-ESM-LR/CCLM-0.11◦ JJA 1970-1999 9.8 % 75 % 49.8 % | 90.0 %

CORDEX-EU/Historical (2,760) (271) (21/28) (135/271 | 2,484/2,760)

MPI-ESM-LR/CCLM-0.11◦ JJA 2070-2099 9.5 % 82 % 42.9 % | 90.0 %

CORDEX-EU/RCP8.5 (2,760) (261) (23/28) (112/261 | 2,484/2,760)

moist air into central Europe enabling intense convective precipitation (see Sect. 3.1). In the case of MPI-ESM-LR during

summer, a southward bias in the storm-track axis and over-active North Atlantic blocking are also evident in the CMIP5

historical simulations (Masato et al., 2013).

The similar performance of the classification algorithm across climates, as well as the evaluation period, is confirmed by

looking at the historical and RCP8.5 ECDFs (Fig. 7). As in the training dataset, the ECDFs of the PEDs are shifted towards5

more intense precipitation compared to the ECDFs for the sets of all days. For the PEDs, the probability of exceeding the

respective climatological (JJA) 90th/99th percentile in the historical and RCP8.5 simulations is similar to that found in the

training dataset and the dynamically downscaled PEDs of the evaluation period, roughly 55 %/10 % (as compared to 10 %/1 %

for all days), and the ECDFs are dominated by heavy to extreme events with dry days almost absent. To quantify differences

in the distributions of precipitation events amongst all days and the PEDs for discrete intensity ranges, we compute the relative10

likelihoods (R) of finding a precipitation event within a given intensity range for the historical and RCP8.5 simulations (Fig.

8); this is simply the ratio of the respective probabilities, e.g. P (E|PED) : P (E), with the smaller of the two probabilities

used as the denominator for plotting purposes.

The greatest difference between all days and the PEDs is found in the relative likelihoods of a randomly sampled day

being dry, which is an order-of-magnitude lower in the PEDs. Indeed, considering the set of non-PEDs, the probability density15

function exhibits an even higher density of dry days than found for all days (not shown). Focusing on just wet-day percentiles,

a regime shift from a higher R for all days to a higher R for PEDs occurs above the median wet day event. The higher R for

the PEDs grows further as event intensity nears the most extreme precipitation events, consistent across historical and RCP8.5

experiments and approaching a factor of 10 in places (Fig. 8). For the most extreme events (PD ≥ PW99.9), more variability

between historical and RCP8.5 R-values emerges as the number of days involved limits towards zero. Future changes in the20

fraction of wet-days, and the sensitivity of wet-day percentiles to such changes (Schär et al., 2016), likely contributes to some

of the small differences in relative likelihood between the historical and RCP8.5 experiments.
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Figure 7. Empirical cumulative distribution functions of daily precipitation for all days (red) and PEDs (blue) downscaled to 0.02◦. (a)

Historical (1970-1999), (b) RCP8.5 (2070-2099). All values are area averages over the Wupper catchment. Vertical red lines mark important

percentiles of the all-day distribution.

3.4 Applications and Outlook

The preconditioning of PEDs on known extremal circulation patterns does not just reduce the total number of days to dy-

namically downscale. Importantly, it also allows conclusions to be drawn about changes in catchment-relevant precipitation

between two periods, e.g. present and future climates, for these circulation patterns. A classification method which does not

guarantee the capture of all extreme days clearly cannot be used to draw overall conclusions about precipitation changes in a5

given catchment. Preconditioning on circulation types does, however, allow conclusions to be drawn about changes in specific

classes of precipitation extreme (Fig. 9), e.g. as identified via the clustering methodology outlined in Sect. 2.1. For example, for

a known extremal circulation pattern, will the likelihood that the accompanying precipitation exceeds some catchment-relevant

threshold be higher or lower in the future? This approach is in a way analogous to the framework used in conditional event

attribution (e.g. Trenberth et al., 2015; Pall et al., 2017), where the question is posed: for some observed circulation pattern,10

how is the event’s intensity affected by known thermodynamic changes in the earth’s climate system? A major advantage of

such an approach is the relative robustness of projected thermodynamic changes in the climate system compared to projected

dynamical changes (Shepherd, 2016). From a catchment-hydrology perspective, one could imagine this being particularly

useful for catchments vulnerable to specific compound extremes, for example intense precipitation in an estuarine catchment

compounded by a shoreward moving low-pressure system with strong onshore winds (e.g. Bevacqua et al., 2017). Beyond15

the extremal patterns identified from the training period, however, there remains the possibility that a future climate may also

contain new extremal circulation patterns which were previously either not associated with extreme precipitation or simply not

present at all. Such systematic effects could only be explored with continuous dynamical downscaling of the different climates.
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Figure 8. Relative likelihoods of precipitation on a randomly sampled day from all days and the PEDs being within a given intensity range

for the (a) historical and (b) RCP8.5 0.02◦ simulations. Note that precipitation intensities are based on the percentiles of wet days (PD ≥
0.1 mm)

Figure 9. Percentage change in daily precipitation intensity between the historical and RCP8.5 periods, conditional on extremal circulation

pattern, from the 0.02◦ simulations. The numbers indicate the total number of PEDs for each pattern (i.e. cluster) in the historical (left) and

RCP8.5 (right) periods, while vertical bars represent 90% confidence intervals. Clusters with less than 10 days in either period are excluded

from the calculations. On the right hand side, the corresponding climate change signal for the 95th and 99th percentile of all days is provided

for reference.
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4 Summary and Conclusions

Hydrological modellers, amongst others, benefit greatly from high-resolution climate data at the catchment scale – particu-

larly for studying the impacts of extreme precipitation. In achieving these high resolutions [O(1 km)] while maintaining data

quality, dynamical downscaling to convection-permitting resolution presents numerous advantages, though comes at an often

prohibitive computational expense. To reduce the overall computational burden and instead dynamically downscale only those5

days for which there is an elevated likelihood of extreme precipitation in a catchment, we have developed a flexible and transfer-

able classification algorithm for identifying PEDs and rejecting days unlikely to produce intense precipitation. While reducing

computational expense by over 90 %, the precipitation distribution of the training dataset’s PEDs – in which more-or-less all

extreme days were captured – can be well reproduced via convection-permitting dynamical downscaling, showing an ECDF

dominated by strong to extreme precipitation events. Testing the classification algorithm on continuous datasets driven by a10

different global model, at least three quarters of the CPM’s summertime extremes – which are intrinsically more challenging

to identify than their wintertime counterparts – were caught and computational expenses were again slashed by over 90 %.

The consistent performance of the classification scheme across historical and future climates further demonstrates its utility

for studying changes in defined classes of precipitation extreme, for example those preconditioned on an identified extremal

synoptic pattern which is known to severely affect a given catchment. In this regard, our method is complementary to current15

trends in how the projected impacts of climate change are communicated and adapted to end-user needs. Recent literature

advocates the use of high-resolution weather models to create bespoke storylines of high-impact weather events for a given

catchment in a future climate (Hazeleger et al., 2015). In the so-called ‘Tales’ approach of Hazeleger et al. (2015), the broad

statistical terms in which climate change projections are typically communicated are replaced by high-resolution simulations

of carefully selected past and future weather events over a given catchment in order to study the catchment-specific impacts20

of individual hydrometeorological events from past/future climates. This approach is designed to form part of a collaborative

process in which end-users play a key role in selecting the type of events to be studied, providing vivid case-studies on

which adaptation strategies can be decided (Hazeleger et al., 2015). Our methodology could be integrated seamlessly into this

workflow. An additional advantage of this type of modelling framework is that anthropogenic factors extraneous to global

climate change can easily be implemented into the modelling chain (Shepherd, 2016), for example adding potential changes25

in land-use to a high-resolution hydrological model, or changes in hydraulic infrastructure to a hydraulic model for assessing

impacts on reservoirs, water-treatment plants, drainage systems, etc.

An important element in the transferability of the method to other catchments is its inherent flexibility, allowing in particular

for an active involvement of users. Users can contribute and integrate their empirical knowledge towards the identification of the

local-scale meteorological predictors most suitable for their own catchment. Data availability in the models to be downscaled30

may, however, require choosing parameters that are only approximate indicators of the most suitable ones. For the Wupper

catchment studied here, for example, we found daily maximum 700 hPa vertical velocity to perform better than daily maximum

500 hPa horizontal divergence as an indicator of extreme precipitation in the training dataset. The regional model which we

wished to downscale, however, had saved vertical velocity at too low a temporal resolution to meaningfully calculate daily
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maxima. Adoption of horizontal divergence was thus necessitated, allowing the PEDs to still be appropriately classified while

avoiding an unacceptable increase in computational expense. The method is additionally adaptable to the computing capacity

of the user. With the caveat that excessively high thresholds will result in more undesirably-rejected days, thresholds for the

identification of PEDs can be either raised or lowered based on available computational resources.

A further means through which our methodology can be used to limit computational expense is in the selection of individual5

models from multi-model ensembles (e.g. CMIP) to downscale over a given region, avoiding the computational expense of

dynamically downscaling an entire multi-model ensemble. GCMs whose historical runs fail to satisfactorily reproduce the

observed PED climatology could be considered to poorly represent the regional extremal circulation patterns and thus be

rejected in favour of the top N best-performing models, with N a function of both available computing resources and the

reduction in intra-ensemble spread which can be tolerated. Such a region-targeted selection of GCMs (Maraun et al., 2017)10

could even be combined with the aforementioned ‘Tales’ approach, making a potent tool.

Taking into account the limitations of current statistical downscaling techniques stemming from their lacking a physical

basis (see Introduction), our method represents a computationally inexpensive procedure to produce high-resolution climate

data, focused on extreme rainfall events, for hydrological modellers and decision-makers. The explicit simulation of fine-scale

processes along the modelling chain gives additional confidence in the end product, as fine-scale processes can substantially15

modulate the regional climate change signal (Diffenbaugh et al., 2005). Future advances in statistical downscaling techniques to

better account for local fine-scale forcings and incorporate more physical predictors could provide another alternative, though

widespread transferability would be hard to envisage. Irrespective of improvements in statistical downscaling techniques or

increases in processor power, regional models will always be able to be run at higher spatial resolutions than their global

counterparts. When global models some day run at convection-permitting resolution as standard, classification algorithms can20

still be utilised for downscaling to ever higher resolutions at which even more processes can be explicitly simulated, e.g.

turbulence. Classification algorithms, such as the one presented here, for selective dynamical downscaling preconditioned on

known extremal circulation patterns can thus play an important and enduring role in climate modelling.

Code and data availability. ERA-Interim reanalysis (Dee et al., 2011) are available from the ECMWF (http://apps.ecmwf.int/datasets/data/

interim-full-daily). REGNIE precipitation data (Rauthe et al., 2013) are available from the German weather service (DWD, https://www.dwd.25

de/DE/leistungen/regnie/regnie.html). The 0.11◦ CORDEX data used within this study are distributed within the CORDEX framework by

the Earth System Grid Federation (e.g. https://esgf-data.dkrz.de/projects/esgf-dkrz/). All remaining simulation data and scripts are available

from the corresponding author on request.
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